

UTS400 UNIVERSAL TEST SET

Manual Técnico Usuário

Versão: 3.0

HISTÓRICO DE REVISÕES

Versão	Descrição	Data	Elaborado	Revisão	Aprovação
V1.0	Lançamento inicial	29/11/2021			FF
V2.0	Todos os módulos estão no novo design	01/03/2023			FF
V2.1	Todos os módulos estão no novo design	16/03/2023			FF
V3.0	Todos os módulos estão no novo design	01/11/2023			FF

Alertas de Segurança:

Não conecte o equipamento a níveis de tensão fora da faixa de operação.

Se o equipamento de teste tiver alguma condição de trabalho anormal, entre em contato com a ExS Solutions para obter suporte.

O equipamento pode gerar valores analógicos de grande magnitude, o uso indevido pode causar danos a ele ou ao usuário.

É desejável que o usuário esteja qualificado no manuseio deste equipamento, esta qualificação pode ser obtida gratuitamente através do treinamento online disponível no site da EXS Solutions.

Direito autoral

Este documento pode ser compartilhado sem quaisquer restrições, no entanto, caso o usuário identifique algum erro de procedimento ou observe alguma melhoria, pedimos que não o edite, mas entre em contato com nosso suporte para que possamos avaliar a possibilidade de revisão do documento.

PREFÁCIO

Indicação de Conformidade

Este produto está em conformidade com a CE de acordo com as diretivas relevantes da UE.

Centro de Suporte ao Cliente

Segunda a sexta-feira, das 8h às 17h.

E-mail do Centro de Suporte ao Cliente:

suporte@gpecx.com

Cursos de Treinamento comercial@gpecx.com

Telefone: +55 19 9 3478-1019

Índice

Índi	ce		5
1.	Introdução .		6
2.	Característic	cas Técnicas	8
	2.2	Fonte de alimentação e requisitos ambientais	8
	2.3	Saída de tensão	8
	2.4	Saída de corrente	8
	2.5	Frequência e ângulo de saída	9
	2.6	Entrada e saída binária	9
	2.7	Saída auxiliar DC	9
	2.8	Comunicação	. 10
	2.9	Gabinete: estrutura, tamanho e peso	10
3.	Descrição de	os Terminais	. 11
4.	Descrição de	o Software	12
	5.1	Interface principal	12
	5.2	AC Test (teste AC)	. 13
	5.3	Ramping (rampa)	
	5.4	Sequence (sequência)	20
	5.5	Harmonic (harmônicas)	22
	5.6	Distance (distância)	23
	5.7	Overcurrent (sobrecorrente)	27
	5.8	Remote (remoto)	30
	5.9	Relatórios (Report)	
	5.10	System (sistema)	32
	5.11	Aux. DC	34
5.	Solução de _l	problemas e falhas	.35

1. Introdução

O UTS400 é um dispositivo portátil, desenvolvido pela ExS Solutions em parceria com a Kingsine.

Este dispositivo é usado principalmente para manutenção local e testes de relé de proteção, inspeção de circuito secundário e teste de tensão e corrente secundários.

✓ <u>Plataforma de software de alto desempenho</u>

O UTS 400 usa um microprocessador de 32 bits de alto desempenho e um sistema operacional embarcado em tempo real como plataforma de desenvolvimento, usando de forma abrangente várias tecnologias de ponta, de hardware e software, e tem alto desempenho, alta precisão, alta confiabilidade e alta estabilidade. Tem uma tela LED capacitiva táctil de 7,0 polegadas, operação totalmente por toque, display iluminado, contraste não reflexivo e ótimo brilho para ambientes externos.

<u>Função de autoproteção</u>

Proteção contra superaquecimento de temperatura. O superaquecimento da temperatura do canal pode ser causado pelos seguintes casos:

- o canal de tensão é curto-circuitado quando o UTS400 está injetando tensão;
- o canal de corrente é de circuito aberto quando o UTS400 está injetando corrente;
- trabalho em sobrecarga a longo prazo.

O UTS400 irá parar automaticamente a injeção (tensão e corrente), emitir o alarme e desligar. Só será possível religar o equipamento após o esfriamento até a temperatura pré-definida.

Dissipação de calor

A dissipação de calor do UTS400 adota ajuste inteligente da velocidade do cooler, e o volume de ar é controlado pelo sensor de temperatura no chassi do dispositivo. Durante o tempo normal de trabalho, o cooler funciona em baixa velocidade para manter o ambiente de trabalho silencioso. Quando a temperatura no gabinete atingir 42°C ou mais, acelera a rotação automaticamente para controlar a capacidade de dissipação de calor. O delicado design da estrutura e o projeto de dissipação de calor do UTS400 não apenas permitem ter alta carga, alta corrente e capacidade de trabalho de longo prazo, mas também controlam muito sua estabilidade operacional e confiabilidade.

Fácil transporte e teste

O UTS 400 vem com uma bateria de lítio, nenhuma fonte de alimentação externa é necessária, o equipamento é pequeno e leve em peso, o que é conveniente para os operadores no transporte e facilita os testes no local. Ideal para uso em:

Plataformas

Planta solar

Subestação

<u>Fácil utilização</u>

O UTS400 possui um software extremamente amigável e poderoso, com o qual é possível testar diversos equipamentos como:

Indústria

Relés de proteção

Medidores de energia

Transdutores

2. Características Técnicas

2.2 Fonte de alimentação e requisitos ambientais

Carregador AC/DC	
Entrada	100~240Vac,50/60Hz,máx. 2.5A
Saída	33.6Vdc, 5.0A (168W)

Bateria Interna		
Capacidade	90WH	
	As condições normais de operação são superiores a 8 horas	
Tampo do operação	(versão de bateria de lítio de 8 células).	
	O tempo de operação contínuo é superior a 1 hora (saída de	
	corrente em 5A)	
Tempo de carregamento	Carregamento rápido, menor que 1 hora	

Ambiente		
Temperatura de Operação	0°C~45°C	
Temperatura de Armazenamento	-5°C~50°C	
Humidade	<85%RH, sem condensação	

2.3 Saída de tensão

Saída de tensão		
Faixa de saída	4×300 Vac (L-N)	
Evotidão	0~1V: ±2mV	
EXALIGAD	1~VMax: ± (0.02%Rd+0.03Rg) Guar	
Resolução 0.001V		
Distorção	<0.05%Typ. / <0.1% Guar.	

2.4 Saída de corrente

Saída de corrente		
Faixa de saída	4×10A ac (L-N)	
Evatidão	0~0.22: ± 2mA	
EXALIUAO	0.2~IMax: ± (0.02%Rd+0.03Rg) Guar.	
Resolução	0.001A	
Distorção	<0.05%Typ. / <0.1% Guar.	

O UTS 400 tem 4 saídas de corrente de fase e 4 saídas de tensão de fase, entre as quais "IA, IB, IC e IX" são os terminais de saída de corrente, "In" é o terminal comum de saída de corrente, "UA, UB, UC e UX" são os terminais de saída de tensão, e "Un" é o terminal comum de saída de tensão. As saídas adotam tomadas banana, que podem ser usadas com os cabos e pinos banana que acompanham o kit.

2.5 Frequência e ângulo de saída

Frequência e Ângulo de Fase		
Faixa de Frequência	10~1KHz	
Precisão de Frequência	±5ppm	
Resolução de Frequência	0.001 Hz	
Faixa de Fase	0°~360°	
Precisão de Fase	<0.1° Typ. / <0.2° Guar. 50/60Hz	
Resolução de Fase	0.001°	

2.6 Entrada e saída binária

Entrada binária		
Quantidade	2 pares	
Faixa de tensão	Contato seco, tensão de entrada = DC 0~300V	
Saída binária rápida		
Quantidade	2 pares	
Simulador de disjuntor	Pode ser definido como Status Abrir ou Status Fechar	
	Abra a saída de contato seco usando o relé opto-acoplador, a	
Desempenho do contato	resistência de ligação é ≤6Ω e a tensão suportável de	
	desligamento é ≤DC350V	
Função de teste SOE	O erro de tempo entre as duas saídas é ≤0,2ms.	

O UTS 400 é projetado com entrada binária de 2 canais e saída binária de 2 canais. Eles são separados independentemente um do outro.

Da mesma forma, os 2 canais de saídas binárias são independentes entre si, e usam a saída de contato seco do relé do opto-acoplador. Quando o sinal de saída binário é válido, o switch correspondente do software exibe fechado ou aberto. $DO:1\sigma' 2\sigma'$

2.7 Saída auxiliar DC

Fonte de tensão DC auxiliar		
Faixa	Ajustável de 0 a 350Vdc	
Exatidão	5%Rg Guar.	

Terminal de saída auxiliar DC é acionado via software onde é possível definir o valor desejado.

Nota: manter a saída auxiliar sempre desligada caso não haja uso, evitando consumo da bateria.

2.8 Comunicação

Comunicação	
USB2.0	1 plugue USB

Pode ser usado para atualizar software e exportar relatório.

2.9 Gabinete: estrutura, tamanho e peso

Gabinete: estrutura, tamanho e peso		
Estrutura do gabinete	Liga de alumínio.	
Dimensão	285mm × 180mm × 95mm—(C×A×L)	
Peso líquido	4Kg (Com bateria de lítio)	

3. Descrição dos Terminais

Item	Descrição
1	Saída Binária (DO)
2	Entrada Binária (DI)
3	Porta Ethernet RJ45 (uso em fábrica)
4	Porta USB
5	Porta Serial (uso em fábrica)
6	Saída de Tensão
7	Saída de Corrente
8	Cooler de resfriamento
9	Botão liga/desliga
10	Terminal de aterramento
11	Saída Aux.DC
12	Porta de carregamento

4. Descrição do Software

5.1 Interface principal

		2) 	3 4	4
2023-11	-13 15:31:34	UTS400 Protect	tion Relay Tester	30°C	98%
	DC Test	AC Test	Ramping	Sequence	6
	Harmonic	Distance	44 Overcurrent	(° ° ° ° (° ° ° I/O Remote	
1.3.0024	7		≅ 🐼 Syster	n 🖭 Aux.	DC

Quando o UTS400 é ligado, a interface mostrada acima é exibida.

- 1 Data e hora
- 2-Modelo do equipamento;

 3 – Indicador de temperatura interna. Ao clicar neste ícone, uma aba se abre mostrando as 4 últimas temperaturas e a velocidade de rotação do cooler;

- 4 Indicador de operação, fica verde quando o equipamento está injetando sinal;
- 5 Nível de bateria restante, quando em carga, ao lado esquerdo deste símbolo aparece um raio;
- 6 Módulos de teste;
- 7 Versão do software;
- 8 Menu de sistema;
- 9 Menu saída auxiliar DC.

5.2 AC Test (teste AC)

命	2023-11-13 15	:31:4	16		AC Test			30°C		98%
UA:	0.000	V	0.000	•	60.000	Hz	Settin	g T	rigg	er
UB:	0.000	V	240.000	•	60.000	Hz	Start:	20.000	V	+
UC:	0.000	V	120.000	•	60.000	Hz	Start	20.000	V	
UX:	0.000	V	0.000	•	60.000	Hz	End:	40.000	V	
IA:	0.000	A	0.000	•	60.000	Hz	Step:	1.000	V	-
IB:	0.000	A	0.000	•	60.000	Hz	Auto		0.5	00 -
IC:	0.000	A	0.000	•	60.000	Hz	Auto		0.5	00 5
IX:	0.000	A	0.000	•	60.000	Hz	Variable:	UA	1	~
-	Trip Value		24.000 V	C	26.000 V		TestItem:	Amplit	ude	~
	Trip Time		0.461 s		0.266 s		Mode	Contin		
Re	turn.Coeff		1.083		Calc		Woue.	Contin	uous	
	Start	٦	01:10 20	5	DO:10	20		F	Repo	rt

Este módulo é indicado para injeção de correntes secundárias, para verificação de fiação e leituras de instrumentos de medição ou proteção. Além disso, serve para testar inúmeras funções de proteção. Cada detalhe operacional deste módulo é apresentado a seguir.

Saída de tensão AC: pode ser ajustado amplitude de tensão (0 a 300VAC), fase (-360 a 360 graus), frequência (10 a 1000Hz), pressione o botão "Start" para iniciar a injeção de tensão.

Nota: antes de pressionar Start, verifique as conexões, não deve haver curto-circuito entre as fases de tensão.

UA:	0.000	V	0.000	•	60.000	Hz
UB:	0.000	V	240.000	•	60.000	Hz
UC:	0.000	V	120.000	•	60.000	Hz
UX:	0.000	V	0.000	•	60.000	Hz

Saída de corrente AC: pode ser ajustada amplitude de corrente (0 a 10A), fase (-360 graus a 360 graus),

frequência (10 a 1000Hz), pressione o botão "Start" para iniciar a injeção de corrente.

Nota: antes de pressionar Start, verifique as conexões, não pode ter circuito aberto.

IA:	0.000	A	0.000	•	60.000	Hz
IB:	0.000	A	0.000	•	60.000	Hz
IC:	0.000	A	0.000	•	60.000	Hz
IX:	0.000	A	0.000	•	60.000	Hz

Trip value: Registra o valor de tensão ou corrente quando houver ação de entrada binária;

Trip time: Registra o tempo de ação da entrada binária, depois que o botão Iniciar for pressionado.

Nota: existem 2 colunas para o registro de até 2 ação de binária, normalmente a segunda funciona como retorno.

Trip Value	24.000	V	26.000	V
Trip Time	0.461	s	0.266	s
Return.Coeff	1.083		Calc	

Return.Coeff: Calcula automaticamente o coeficiente de retorno.

Trip Value	24.000 V	26.000 V
Trip Time	0.461 s	0.266 s
Return.Coeff	1.083	Calc

Parameter settings

Settin	g T	rigge	er
Start:	20.000	V	+
End:	40.000	V	
Step:	1.000	V	-
Auto		0.5	00 s
Variable:	UA		~
TestItem:	Amplit	~	
Mode:	Contin	uous	~

Start: Defina o valor inicial de tensão ou corrente.

End: Defina o valor final de tensão ou corrente.

Step: Defina o valor de cada passo

+ e - : Clique para aumentar ou diminuir o valor da variável conforme definido no campo "variable" e
 "test item";

Auto: Quando selecionado, defina o tempo de intervalo de cada passo. Neste modo, após pressionar "Start", a mala iniciará a injeção automática conforme as definições deste quadro.

Variable: Defina os canais de tensão UA, UB, UC, UX, UAUBUC, ou corrente IA, IB, IC, IX, IAIBIC.

Test Item: Defina se o item a ser testado será inserido em amplitude, frequência ou fase.

Mode: Defina o modo de teste

- modo auto selecionado

from-to = de-para = inicia no valor definido em "Start" e finaliza no valor definido em "End",
 caso recebe sinal de trip, interrompe o teste;

- from-to-from = de-para-de = inicia no valor definido em "Start", atinge o valor definido em "End" e retorna ao valor de "Start". Caso receba o trip no momento de "ida", inicia automaticamente o "retorno", caso recebe um sinal de trip novamente, finaliza o teste.

- modo auto desativado

- from-to = inicia o teste e caso haja sinal de trip, finaliza o teste;

- continuous = inicia o teste e só finaliza ao clicar no botão stop;

Fault Calculate

Trip Value Trip Time Return.Coeff		Calc	
		Fault-Cale	c
	Fault Parameter		Short-Circuit Impedance
	Mode Const I 🗸	Fault-I 1.000 A	Z 0.000 Ω R 0.000 Ω
	F-Type A-N 🗸	Load-I 0.000 A	θ 75.000 ° Χ 0.000 Ω
	CT Dir. Line 🗸	Load-θ 0.000 °	Grounding Factor
	PT Dir. Line 🗸	V AUX Custom 🗸	Mode KL v
	Fault Dir. Forward 🗸	Range 0.000 V	KL Range 0.670
		Angle 0.000 °	KL Angle 0.000 °
		ОК	Cancel

Ao clicar em "Calc" é possível definir os parâmetros de falha, a impedância de curto-circuito e o coeficiente de compensação de sequência zero, clique em OK após a configuração. A interface "AC test" exibirá automaticamente o resultado do cálculo de falha e produzirá o valor do resultado do cálculo de falha após a execução.

Fault parameter

Mode:

- Const I = A corrente é constante, ou seja, uma corrente de falha constante é ajustada, e a tensão de falha é calculada a partir da corrente de falha e impedância de curto-circuito;
- Const V = A tensão é constante, ou seja, uma tensão de falha constante é ajustada, e a corrente de falha é calculada a partir da tensão de falha e impedância de curto-circuito.

Fault V: Quando Mode Const V, o valor da tensão de falha pode ser definido.

Fault I: Quando Mode Const I, o valor da corrente de falha pode ser definido.

F-type: Os tipos de falhas que podem ser definidos são: A-N, B-N, C-N, A-B, B-C, C-A, A-B-N, B-C-N, C-A-N, A-B-C.

CT dir: Direcionalidade de corrente, pode ser definido para apontar para a linha ou para o barramento. **PT dir:** Direcionalidade de tensão, pode ser definido para apontar para a linha ou para o barramento.

Fault dir: Pode ser definido como falha de direção positiva ou negativa.

Load I: Defina o valor da corrente em carga.

Load Θ (phase angle): Defina o valor do ângulo de fase em carga.

Short-circuit impedance: Defina o valor de impedância |Z| e o ângulo de fase Θ durante o curto-circuito, o software calcula automaticamente os valores de resistência R e reatância X; ou defina o valor R, X e o software calcula automaticamente |Z| e Θ .

Grounding Factor

Mode (Zero sequence compensation coefficient - Coeficiente de compensação de sequência zero):

- Quando o método de ajuste é KL, a amplitude e o ângulo de KL precisam ser ajustados;
- Quando o método de ajuste é RE/RL&XE/XL, é preciso definir a amplitude de RE/RL e a amplitude de XE/XL;
- Quando o método de ajuste é Z0/Z1, é preciso definir a amplitude e o ângulo de Z0/Z1.

Definir o coeficiente de compensação de sequência zero:

Há duas configurações:

1. KL

2.Re/RI&Xe/XI

Onde KL= é $\frac{1}{3} \cdot \frac{Z_0 - Z_1}{Z_1}$ representada por Re e Im.

Geralmente, considera-se que o ângulo de impedância da sequência zero é igual ao ângulo de impedância da linha. Atualmente, KL é um número real, e a parte imaginária Im é O. Para RCS900, ISA300 e outras séries de dispositivos, o coeficiente de compensação de sequência zero é especificado como KL na configuração, e o modo KL deve ser selecionado durante o teste. Atualmente, Im está definido como O.

Re/RI=Kr=
$$\frac{1}{3} \cdot \frac{R_0 - R_1}{R_1}$$

Xe/XI=Kx= $\frac{1}{3} \cdot \frac{X_0 - X_1}{X_1}$

Para CSL, PSL, WXB e outras séries de dispositivos, os coeficientes de compensação de sequência zero são especificados como Kr e Kx na configuração, e os métodos de compensação Re/RI&Xe/XI devem ser selecionados.

Método de configuração:

- Para a verificação da configuração da direção X, defina o ângulo de impedância de curtocircuito para 90° e Kr para 0°.
- Para definir a verificação do valor na direção R, defina o ângulo de impedância de curto-circuito para 0° e Kx para 0°.

<u>Nota:</u> Para falhas de curto-circuito não aterradas, o fator de compensação de sequência zero não participa do cálculo de curto-circuito.

Relação de conversão entre Re/RI, Xe/XI e Zo/Z1 e KI:

$$K_{L} = \frac{K_{R}R_{1}^{2} + K_{X}X_{1}^{2}}{R_{1}^{2} + X_{1}^{2}}, \quad \Phi(K_{L})=0$$
$$K_{L} = \frac{1}{3} \left(\frac{Z_{0}}{Z_{1}} - 1\right)$$

<u>Nota 1:</u> O coeficiente de compensação de sequência zero deve ser selecionado corretamente, especialmente para a falha de curto-circuito de aterramento em que o coeficiente de compensação de sequência zero participa do cálculo da tensão de curto-circuito. A ação adota o método de compensação Re/RI&Xe/XI, e o testador de distância de linha de Nanjing NARI e Shenzhen NARI adota compensação KI).

Nota 2: O ajuste da corrente de curto-circuito deve ser definido razoavelmente de acordo com o tamanho do valor de impedância de cada segmento. Para evitar que a amostragem do dispositivo de tração seja incapaz de julgar, devido ao fato de que o valor de impedância no valor fixo é muito pequeno, a saída de tensão de curto-circuito pelo testador após o cálculo é muito pequena. Neste momento, a corrente de curto-circuito desta seção deve ser aumentada. A fim de evitar que a amostragem do dispositivo de tração não seja capaz de determinar se a linha está defeituosa devido à saída excessiva de tensão de curto-circuito pelo testador devido ao valor de impedância excessivamente grande no valor fixo, a corrente de curto-circuito desta seção deve ser reduzida neste momento.

<u>Trigger</u>

Neste campo são configuradas as entradas binárias para que o equipamento recebe o sinal de trip do relé de proteção.

Logic: Escolha entre AND = terá ação somente quando as duas entradas binárias agirem ao mesmo tempo ou OR = terá ação quando uma das entradas binárias agirem.

DI 1/2: Entrada binária, defina entre:

- X Desabilitada;
- Image: Habilitada;
- Borda de descida;
- I Borda de subida.

5.3 Ramping (rampa)

O módulo de teste de rampa é usado para testar a mudança transitória de múltiplas variáveis. Vários itens de teste podem ser definidos. Basicamente temos a execução de várias linhas de teste AC.

企	2023-11-	13 15:31:58		Ra	mping	C 🥥 98%			
	Voltage	Current			Settin	g	Trigge	er	
UA:	66.400	v 0.000	• 60	.000 Hz	Start:		0.000 V	End:	5.000 V
UB:	0.000	V 240.000	° 60	.000 Hz	Step:	5-	1.000 V	Time:	1.000 s
UC:	66.400	v 120.000	• 60	.000 Hz	Variable:	UB	~	TestItem:	Amplitude ~
UX.	66 400	V 0.000	• 60	000 Hz	Mode:	Phase	e v	Function:	27
074.	00.100	•			T.Pr	efault:	5.00	00 s	Output Once
R	Test Resul	t			T.Int	terval:	5.00	o s A	dd Delete
4	Variable	Function	T.nom	Dev	Trip	Time	Trip Val	ue DI	Result
2	UA	27	1.000s	0.100)s				NoTest
3	UA	27	1.000s	0.100)s				NoTest
4	UB	27	1.000s	0.100)s				NoTest
	Start	DI	:10 20	s D	0:10	20			Report

Voltage/Current: Configure o valor de saída da tensão de falha e o valor de saída da corrente de falha. Note que o valor de saída não pode ser definido quando a tensão ou corrente é selecionada como uma variável no quadro setting.

					current		onage	V
0.000 A	IA:	Hz	60.000)• [0.000	v	66.400	UA:
0.000 A	IB:	Hz	60.000	•	240.000	v	0.000	UB:
0.000 A	IC:	Hz	60.000)• [120.000	V	66.400	UC:
0.000 A	IX:	Hz	60.000)• [0.000	V	66.400	UX:
A (A (A (0.000 0.000 0.000	IB: 0.000 IC: 0.000 IX: 0.000	Hz IB: 0.000 Hz IC: 0.000 Hz IX: 0.000	60.000 Hz IB: 0.000 60.000 Hz IC: 0.000 60.000 Hz IX: 0.000	 60.000 Hz 60.000 Hz 60.000 Hz IC: 0.000 60.000 Hz IX: 0.000 	240.000 60.000 Hz IB: 0.000 120.000 60.000 Hz IC: 0.000 0.000 60.000 Hz IX: 0.000	V 240.000 60.000 Hz IB: 0.000 V 120.000 60.000 Hz IC: 0.000 V 0.000 60.000 Hz IX: 0.000	0.000 V 240.000 ° 60.000 Hz IB: 0.000 66.400 V 120.000 ° 60.000 Hz IC: 0.000 66.400 V 0.000 ° 60.000 Hz IX: 0.000

Parameter setting

Settin	g	Trigger							
Start:	0.	000	v			End:		5.000	v
Step:	-1.	000	v		Т	ime:		1.000	s
Variable:	UB		~	Te	estl	tem:	Amp	olitude	~
Mode:	Phase		~	F	unc	tion:			27
T.Pre	efault:	5	5.00	00	s		Outp	out Ond	e
T.Int	erval:	5	5.00	00	s	A	dd	Dele	te

Start: Defina o valor inicial da variável de falha

Final: Defina o valor final da variável de falha

Step: Defina o valor de cada passo

Time: Defina o tempo de intervalo de cada passo

Variable: Selecione variável a ser testada

TestItem: Selecione entre teste de amplitude, fase ou frequência

Mode: Selecione se a saída é em fase ou continua. (continua = curva suave entre linhas de teste, fase = salto direto entre linhas de teste. Mais observado em osciloscópio quando o item a ser testado é fase)

Function: Defina a função a ser testada em cada linha.

T.Prefault: Antes do início de cada linha de teste, emite um período de tempo antes da falha (em estado sem carga) para garantir a reinicialização confiável dos contatos de proteção e a conclusão da preparação de refechamento. Portanto, a configuração desse tempo é geralmente maior do que o tempo de reinicialização da operação (incluindo o tempo de carregamento de refechamento), geralmente cerca de 20 a 25S.

Output once: Capaz de selecionar quando o usuário assinala "T.Prefault", o que significa que o tempo de pré falha será aplicado somente na primeira linha de teste.

T.Interval: Tempo de intervalo entre cada linha de teste. O equipamento não tem saída de tensão e corrente durante este tempo. Essa configuração de tempo é geralmente maior do que o tempo de reinicialização do relé.

Add: Adicionar uma linha de teste.

Delete: Exclua a linha de teste.

<u>Trigger</u>

Neste campo são configuradas as entradas binárias para que o equipamento recebe o sinal de trip do relé de proteção.

Logic: Escolha entre AND = terá ação somente quando as duas entradas binárias agirem ao mesmo tempo ou OR = terá ação quando uma das entradas binárias agirem.

DI 1/2: Entrada binária, defina entre:

- X Desabilitada;
- 🔽 Habilitada;
- D Borda de descida;
- I Borda de subida.

5.4 Sequence (sequência)

命 2023-	11-13 15:	:32:18		Sequence			30℃	98	6
•	State [1	1/2]		E []		Trip:	Time	~	
Voltage	e C	urren	t			Angle:	Phase	~	
UA:	66.400	v	0.000 °	60.000	Hz	Time:	And	5.000 s	
UB:	66.400	v	240.000 °	60.000	Hz	Logic:	And		
UC:	66.400	v	120.000 °	60.000	Hz	DO:	01	02	
UX:	66.400	v	0.000 °	60.000	Hz		Ca	lc	
Test	Result	Asses	sment						
State	DI 1	1	DI 2						
1	2.30	7s	No Action						
2	3.49	1s	No Action						
-									
Star	rt	DI	10 20	DO:10	20	1		Report	

A sequência de estado forma principalmente várias seções de estado, definindo manualmente a tensão, corrente, saída binária e tempo de execução de cada estado.

As etapas de teste da sequência de estado são as seguintes:

1 - Edição da sequência de estados

A edição da sequência de estado inclui principalmente adicionar estado, inserir estado e excluir estado.

A barra "state 1/3" no canto superior esquerdo da tela significa o seguinte:

- 1 representa o estado atual da sequência de estados;
- 3 representa o número total de estados adicionados (max. suportado são 8);

Neste ponto, os parâmetros do estado 1 podem ser ajustados de acordo com os requisitos de teste, incluindo amplitude de tensão/corrente, fase, frequência, status das 2 saídas binárias e duração de tempo.

- **Delete:** Exclui o estado atual.
- **Add:** Adiciona um novo estado, após o estado atual.
- Insertion: Insere um novo estado antes do estado atual.

Trip: Escolha entre tempo, binária, binária e tempo ou botão.

Angle: Escolha entre Phase = saída de fase ou Continuous = saída continua por formas de onda.

Time: Defina o tempo de duração do gatilho do estado atual.

Logic: Escolha entre AND = terá ação somente quando as duas entradas binárias agirem ao mesmo tempo ou OR = terá ação quando uma das entradas binárias agirem.

DO 1/2: Defina se o estado atual precisa de saída binária, alternar para fechado indica que o estado atual saída binária será fechado.

DI 1/2: Entrada binária, defina entre:

- 🔀 Desabilitada;
- Habilitada;
- Borda de descida;
- I Borda de subida.

Test result

State	DI 1	DI 2
1	2.307s	No Action
2	3.491s	No Action

Mostra o tempo de ação de entrada binária durante o teste de sequência de estado.

2 – Definição das condições de avaliação

A definição das condições de avaliação consiste basicamente em definir as condições para início e fim do teste, tempo nominal e o desvio.

命	2023-11-13 15	:32:	23		Seque	nce				30°C	01	98%
-	State [1/2	:]		₽ []				Trip:	Time		~
V	oltage C	urre	ent						Angle:	Phase		~
UA:	66.400	v	0.000)。	60.	000	Hz		Time:	~	5.00	10 s
UB	66,400	v	240.000	5.	60.	000	Hz		Logic:	And)r
110	66.400		120.000	1.	60	000	LI-7		DI:			
00.	60.400	V	120.000	5		000		-	DO:	0	02	
UX:	66.400	V	0.000	ງໍ	60.	000	Hz			Ca	lc	
K	Test Result	Ass	essment					Ade	d	Delete	Cle	ear
and the second	Start		Stop		T.nom	2.10	Dev		Act Ti	me R	esult	The second
1	State1		State1		5.000s		0.100s		Nat	N	NoTes	t
2	State2		State2		2.000s		3.000s		Naf	N	NoTes	t
	Start	-	DI:10 2	20	DO:1	6	20	,			Repo	rt

Assessment

Add: Clique para adicionar mais linhas de teste;
Delete: Clique para deletar a linha selecionada;
Clear: Clique para excluir todas as linhas;
Start: Defina a condição para início do teste;
Stop: Defina a condição para final do teste;
T.nom: Defina a o tempo nominal de atuação;
Dev: Defina o desvio aceitável para o tempo nominal;
Act time: Mostrará o tempo de atuação;
Result: Mostrará o resultado do teste.

Start the test: Clique no botão "Start" para iniciar o teste de sequência de estado.Stop the test: Clique no botão "Stop" para interromper o teste.

5.5 Harmonic (harmônicas)

ŵ	2023-11-1	13 1	5:32:31		Harm	onic		3	0°C	98%
	Order:	1	[1/5]		Setting	Trig	ger			
UA:	66.400	v	0.000	0	Start:	0.000	v	End:	1.000 V	+
UB:	66.400	v	240.000	•	Step:	1.000	v [From-to		-
UC:	66.400	v	120.000	•	Auto	1	.000 s	Order	2	~
UX:	0.000	v	0.000	•	Variable:	UAUBUC	~	TestItem:	Range	~
IA:	0.000	A	0.000	•	THD:	Amp	olitude	O Per	entage	
IB:	0.000	A	240.000	•	T.nom:	1.0	00 s	Dev:	0.10	0 s
IC:	0.000	A	☑ 120.000	•	Test Result					
IX:	0.000	A	0.000	•	Variable	T.nom	Dev	Trip Time	DI	Result
					UAUBUC	1.000s	0.100s		and the second	NoTest
	Start		DI:1 o	1	20 DO:1	0 20	5		Re	port

Order: Navegue entre as ordens harmônicas para alterar os parâmetros.[1/5]: 1 representa as configurações da página atual, e 5 representa o número total de páginas de parâmetros, pode ser alternado entre 1-5 páginas, onde 1 é a exibição da onda base, 2 a 4 é o número de harmônicos definidos em si, e 5 é a distorção harmônica total THD e valores RMS.

Setting

Start: Defina o valor inicial da mudança de fase ao mudar automaticamente, que pode ser exibido de acordo com o intervalo ou a variação percentual do conteúdo harmônico;

Final: Defina o valor final da mudança de fase ao mudar automaticamente, que pode ser exibido de acordo com o intervalo ou a variação percentual do conteúdo harmônico;

Step: Defina o valor do passo manual ou automaticamente, que pode ser exibido de acordo com o intervalo ou variação percentual do conteúdo harmônico;

From-to: Teste inicia ao pressionar "Start" e finaliza ao receber sinal de trip;

Auto: Se selecionado o software entra no modo de mudança automática, que é alterada

automaticamente de acordo com o intervalo de tempo definido. Neste modo não é permito remover a seleção "From-to".

Order: Selecione o número de harmônicos recorrentes como opcional 1-20;

Variable: Selecione entre as opções tensão monofásica UA, UB, UC, UX, tensão trifásica UAUBUC, corrente monofásica IA, IB, IC, IX, corrente trifásica IAIBIC;

Test Item: Selecione a range ou fase como o item de mudança;

THD (Harmonic content): Selecione "Amplitude" para exibição do conteúdo harmônico por amplitude ou "Percentage" para conteúdo harmônico exibido por porcentagem;

T.nom: Defina o tempo nominal de atuação;

Dev: Defina o desvio aceitável do tempo nominal de atuação.

<u>Trigger</u>

Logic: Selecione And (lógica E) ou OR (lógica OU);

DI 1/2: Entrada binária, defina entre:

- 🔀 Desabilitada;
- 🔽 Habilitada;
- 🔲 Borda de descida;
- 🗍 Borda de subida.

Test Result

Test Result					
Variable	T.nom	Dev	Trip Time	DI	Result
UAUBUC	1.000s	0.100s			NoTest

Mostra os valores definidos da variável e:

Trip time: Tempo de trip;

DI: Porta binária acionada;

Result: Resultado do teste = não testado, passou ou reprovou;

5.6 Distance (distância)

습	2023-11	-13	15:32	:48			(Distance				30°C	98%	
Pa	ramete	r	Sett	ing	g Trig	gge	r		UA	1	0.000V	0.0	00°	
IZI	1.	066	ΩR	ſ	0.490	Ω		Add	UC	6	6.400V	120.	000°	
0	62	632	• v	2	0.947	0	ſ	Delete	UX	(V000.	0.000°		
0[02.	052	^	5	0.547	112	-	Jelete	IA	1	0.615A	298.	607°	
	Fault A	N-N		~		See. 2		Clear	IB		5.000A	180.	000°	
Fai	Fault Dir. Forward V Time 3.000 s IC 5.000A 60.000°													
Ta	Fault Dir. Forward V I Time S.000's Impedance Factor													
X	Test Res	sult								0.70	0.95	1.05	1.20	
2	Fault	Fau	It Dir		Z	ZĐ		T.nom	De	v	Trip Time	DI	Result	
1	A-N	For	rward		1.066Ω 6	2.63	2°	3.000s	0.10	Os			NoTest	
2	A-N	For	rward		1.447Ω 6	2.63	2°	3.000s	0.10	Os	A CONTRACTOR		NoTest	
	Start			DI	1:10 20	5	D	0:10	20			Re	port	

Parameter

Configure os parâmetros de teste de acordo com os parâmetros de valor fixado no dispositivo de proteção.

[Z]: Indique o valor de impedância de proteção de distância;

\Theta: Indique o ângulo de impedância da distância de proteção;

Após indicar estes dois parâmetros, R e X serão calculados automaticamente.

ou

R: Indique o valor da resistência (parte real) da distância de proteção;

X: Indique o valor de reatância (parte virtual) da distância de proteção;

Após indicar estes dois parâmetros, $|Z| \in \Theta$ serão calculados automaticamente.

Fault: O tipo de falha pode ser selecionado de A-N, B-N, C-N, A-B, B-C, C-A, A-B-N, B-C-N, C-A-N, A-B-C, acordo com a função a ser testada;

Fault Dir.: Pode ser definido para direção positiva (forward) ou direção negativa (reverse), escolha de acordo com a direção da falha;

Time: Defina a duração da falha em segundos. Quando o ponto de teste estiver selecionado, marque a caixa de seleção "time" para modificar o tempo de falha do ponto de teste atual;

Add: Adiciona linhas de teste;

Delete: Deleta linha de teste, uma a uma;

Clear: Apaga todas as linhas de teste criadas;

UA	10.000V	0.000°
UB	66.400V	240.000°
UC	66.400V	120.000°
UX	V000.0	0.000°
IA	10.615A	298.607°
IB	5.000A	180.000°
IC	5.000A	60.000°
Impe	edance Factor	
	0.70 🔳 0.95	1.05 1.20

Parâmetros de tensão, corrente e fase: Exibem o valor de saída da falha de configuração atual **Impedance factor:** 0.7, 0.95, 1.05, 1.20, que significa o múltiplo do valor de impedância atualmente definido no teste. Por exemplo, quando o valor de impedância Z=1 Ω , o múltiplo de impedância é selecionado como 0,7, e o valor real de impedância medido é 1 Ω *0,7=0,7 Ω . Para cada fator de impedância é gerado uma linha ao clicar em "add".

Test result: Exibe as linhas de teste e o resultado do teste.

Setting

요 2023-11-1	3 15:32:50		Distance		30°C	98%
Parameter	Setting	Trigg	er			
Mode Con	st U 🗸	Fault-U	10.000 V	Grounding	KL	~
CT Dir. Line	~	Load-I	5.000 A	KL Range		0.670
PT Dir. Line	~	Load-0	60.000 °	KL Angle		0.000 °
T.Prefaul	t	3.000 s	T.Interval	1.000	s	
V AUX Cus	tom 🗸	Range	0.000 V	Angle	0.000 °	

Mode (modo de cálculo):

- Const I: a corrente é constante, ou seja, uma corrente de falha constante é ajustada, e a tensão de falha é calculada a partir da corrente de falha e impedância de curto-circuito;
- Const U: a tensão é constante, ou seja, uma tensão de falha constante é ajustada, e a corrente de falha é calculada a partir da tensão de falha e impedância de curto-circuito;

Fault-U: Quando o modelo de cálculo define a tensão como constante, o valor da tensão de falha pode ser definido;

Fault-I: Quando o modelo de cálculo define a corrente como constante, o valor da corrente de falha pode ser definido;

CT Dir.: Defina o ponto de direção atual para linha ou barramento;

PT Dir.: Defina a tensão da linha ou barramento;

Load-I: Defina a corrente do estado de carga;

Load-O: Defina o ângulo do estado de carga;

T.Pre-fault: Defina o tempo de saída do estado pré-falha (neste estado tensão nominal de saída)

T.Interval: Defina o tempo de intervalo entre as linhas de teste (este estado produz 0 tensão e 0 corrente)

V AUX: caso necessário, defina os valores de saída para o canal UX do equipamento.

Coeficiente de compensação de sequência zero:

Quando o método de ajuste é KL, a amplitude (KL Range) e o ângulo de KL (KL Angle) precisam ser ajustados;

Quando o m é todo de ajuste é RE/RL&XE/XL, é preciso definir a amplitude de RE/RL e a amplitude de XE/XL;

Quando o método de ajuste é Z0/Z1, é preciso definir a amplitude (Z0/Z1 R) e o ângulo (Z0/Z1 A). Definir coeficiente de compensação de sequência zero:

Há duas configurações:

KL

Re/RI&Xe/XI

KL=
$$\frac{1}{3} \cdot \frac{Z_0 - Z_1}{Z_1}$$
 representada por Re e Im.

Geralmente, considera-se que o ângulo de impedância da sequência zero é igual ao ângulo de impedância da linha. Neste momento, KL é um número real, e a parte imaginária Im é O. Para RCS900, ISA300 e outras séries de dispositivos de proteção de microcomputadores, o coeficiente de compensação de sequência zero é especificado como KL na configuração de ajuste e o modo KL deve ser selecionado durante o teste. Neste momento, Im está definido como 0.

$$\operatorname{Re/RI=Kr=} \quad \frac{1}{3} \cdot \frac{R_0 - R_1}{R_1}$$

$$Xe/XI=Kx= \frac{1}{3} \cdot \frac{X_0 - X_1}{X_1}$$

Para CSL, PSL, WXB e outras séries de dispositivos de proteção de microcomputadores, os coeficientes de compensação de sequência zero são especificados como Kr e Kx na configuração, e os métodos de compensação Re/RI&Xe/XI devem ser selecionados.

Método de configuração:

Para a verificação da configuração da direção X, defina o ângulo de impedância de curto-circuito para 90° e Kr para 0°.

Para definir a verificação do valor na direção R, defina o ângulo de impedância de curto-circuito para 0° e Kx para 0°.

Nota: Para falhas de curto-circuito não aterradas, o fator de compensação de sequência zero não participa do cálculo de curto-circuito.

Relação de conversão entre Re/RI, Xe/XI e Zo/Z1 e KI:

$$K_{L} = \frac{K_{R}R_{1}^{2} + K_{X}X_{1}^{2}}{R_{1}^{2} + X_{1}^{2}}, \quad \Phi(K_{L}) = 0$$

$$K_{L} = \frac{1}{3} \left(\frac{Z_{0}}{Z_{1}} - 1 \right)$$

Nota 1: O coeficiente de compensação de sequência zero deve ser selecionado corretamente, especialmente para a falha de curto-circuito de aterramento em que o coeficiente de compensação de sequência zero participa do cálculo da tensão de curto-circuito, a seleção correta afetará diretamente os resultados do teste (as distâncias de linha de Guodian Nanzi, Beijing Sifang e Xuji). A proteção adota o método de compensação Re/RI&Xe/XI, e a distância de linha de Nanjing NARI e Shenzhen NARI adota compensação KI).

Nota 2: O ajuste da corrente de curto-circuito deve ser ajustado razoavelmente de acordo com o valor de impedância de cada segmento. Afim de evitar que a amostragem do dispositivo de proteção seja incapaz de julgar devido ao fato de que o valor de impedância no valor fixo é muito pequeno, a saída de tensão de curto-circuito pelo testador após o cálculo é muito pequena. Neste momento, a corrente de curto-circuito desta seção deve ser aumentada. Afim de evitar que a amostragem do dispositivo de proteção não seja capaz de avaliar se a linha está defeituosa devido á saída excessiva de tensão de curto-circuito pelo testador de impedância excessivamente grande no valor fixo, a corrente de curto-circuito desta seção deve ser reduzida neste momento.

Trigger

٢٥٢٢ ٢٠٢٢ ٢٠٢٢	3 15:32:55	Distance	30°C 🔵 98%
Parameter	Setting	Trigger	
	Logi	c: And Or	
	C	א: √1 √2	

Logic: Selecione And (lógica E) ou OR (lógica OU);

DI 1/2: Entrada binária, defina entre:

- 🔀 Desabilitada;
- 🔽 Habilitada;
- 🚺 Borda de descida;
- 🔲 Borda de subida.

Start: Após concluir toda a parametrização, clique no botão "Start" para iniciar o teste.

5.7 Overcurrent (sobrecorrente)

6	2023-11-	13 15:33:0)3	01			30	0°C	98%		
P	arameter	Setti	ng T	rigger	Chart						
nst	. Overcurre	nt(50)	Tim	e Overcurr	ent(51)		Test I	Point			
	Pick-up:	8.50	A 00	Pick-up:	0.900	A		I-test:	C	.945	A
	Time Dial:	0.02	20 s 1	Time Dial:	0.200)	Fun	ction:	51	V	Add
				Curve:	IEC 🗸	.)	Fault	Type:	A-N	V	Multi
IEC/BS142 NI											
1×	Test Resu	lt			and the second				De	elete	Clear
5	FaultType	ABS	Function	T.nom	T.min	T.(max	Trip 1	Time	DI	Result
1	A-N	0.945A	51	28.680s	18.405s	59.	535s	1.51	19s	1	Failed
2	A-N	1.945A	51	1.803s	1.685s	1.9	923s	2.29	94s	1	Failed
3	A-N	2.945A	51	1.167s	1.082s	1.2	252s	2.77	71s	1	Failed
4	A-N	3.945A	51	0.933s	0.857s	1.0	010s	0.19	97s	1	Failed
5	0-N	1 9150	51	0 808c	0.736¢	0.5	RRAC	1 10	1Qc	1	Failed
CONT.	Start	[01:10	20 D	0:10 2	8				R	eport

Este teste consiste em criar várias linhas de teste para as funções 50 e 51.

Parameter

ألم 2023-11-1	3 15:33:03		Ov			30	°C		98%		
Parameter	Setting	3	Trigger		Chart						
nst. Overcurrent	:(50)		Time Overcurr	ent(5	1)	-	Test Point				
Pick-up:	8.500	A	Pick-up:		0.900 A	1	I-test:	0.	945	A	
Time Dial:	0.020	s	Time Dial:		0.200		Function:	51	V		Add
			Curve:	IEC	~		FaultType:	A-N	~		Multi
			IEC/BS142 NI			2					

Inst. Overcurrent (50): Defina os valores de corrente e tempo da função 50.

Time Overcurrent (51): Defina os valores de corrente e tempo da função 51 e selecione a curva (Curve: IEC ou IAC)

Test point

I-test: Defina o valor de corrente do teste

Function: Selecione a função (50 ou 51)

Fault type: Defina o tipo de falha

Add: Adiciona uma única linha de teste conforme configuração escolhida.

Multi: Adicionar múltiplas linhas de teste conforme configuração definida na janela que se abre:

- Begin: Defina o valor de corrente inicial
- End: Defina o valor de corrente final
- **Step:** Defina o valor de cada passo
- Ao clicar em "OK" o software gerará várias linhas de teste conforme "Function" e "Fault Type", iniciando com a corrente definida em "Begin", próximas linhas adicionando o valor definido em "Step" e terminando com a corrente definida em "End" ou a mais próxima.

Setting

2023-11-13	15:33:09	Overcur	rent	30℃	98%
Parameter	Setting	Trigger C	hart		
Current Tol Rel:	2.500 %	T.Prefault:	1.000 s	OC Directio	nal
Current Tol Abs:	0.000 A	Output Once		V.Fault L-N:	115.000 V
Time Tol Rel:	2.500 %	T.Interval:	1.000 s	Current Angle:	-60.000 °
Time Tol Abs:	0.060 s	Max Fault Time:	6.000 s		

Current tolerance: Defina a corrente de tolerância relativa e absoluta;

Time tolerance: Defina o tempo de tolerância relativo e absoluto;

T.Prefault: Tempo em que o dispositivo gera uma saída de tensão nominal;

Output once: Quando selecionado, o tempo de pré falta será realizado somente na primeira linha de teste. Caso contrário, será executado antes de cada linha de teste.

T.Interval: Tempo de intervalo entre cada linha de teste, durante este tempo o equipamento não gera sinais de sáida (tensão e corrente = 0);

Max fault time: Máximo tempo de execução de cada linha de teste. O tempo máximo de falha deve ser maior do que o tempo de ação dos relés.

OC Directional (overcurrent directional): Selecione se a falha tem uma direção, caso tenha defina o valore de falta e ângulo.

<u>Trigger</u>

۵۲۵۲ کی ا	3 15:33:15	Ove	ercurrent	30°C 🔵 98	3%
Parameter	Setting	Trigger	Chart		
	Logic	: O And) Or		
DI: 🗹 1 🗹 2		2			

Logic: Selecione And (lógica E) ou OR (lógica OU);

DI 1/2: Entrada binária, defina entre:

- 🔀 Desabilitada;
- 🔽 Habilitada;
- 🔲 Borda de descida;

Chart:

Neste campo é possível observar o gráfico do teste, e caso já tenha sido realizado, os pontos que passaram aparecem no fráfico em verde e os reprovados em vermelho.

Test Result:

K	Test Resu	lt					De	elete	Clear
5	FaultType	ABS	Function	T.nom	T.min	T.max	Trip Time	DI	Result
1	A-N	0.945A	51	28.680s	18.405s	\$9.535s	1.519s	1	Failed
2	A-N	1.945A	51	1.803s	1.685s	1.923s	2.294s	1	Failed
3	A-N	2.945A	51	1.167s	1.082s	1.252s	2.771s	1	Failed
4	A-N	3.945A	51	0.933s	0.857s	1.010s	0.197s	1	Failed
5	Δ-N	1 9150	51	0 808c	0.7360	0.880c	1 109c	1	Failed
	Start		21.1 2		7.1 2 2	1		Re	port

Neste campo são mostrados as linhas de teste adicionadas e o resultado do teste de cada linha. Delete: Deleta a linha de teste selecionada;

Clear: Apaga todas as linhas de teste;

5.8 Remote (remoto)

2023-11-13 15:33:26	Remote	31°C 🔵 98%
Storm Test	Resolution Test	SOE List: HH:mm:ss:ff SOE event info
Width:	100 ms	
Count:	10	
Enable-DI: 🔲	R	
Start DI:1 of	20 DO:10 2	ර Clear SOE

A principal função do teste de sinal remoto é testar se a proteção do relé pode detectar corretamente o sinal gerado pelo equipamento. O UTS400 simula a ação do equipamento de campo e emite um sinal de deslocamento remoto para a proteção do relé para testar se a proteção do relé pode detectar o sinal de deslocamento.

O teste de sinal remoto inclui principalmente o Resolution Test (sinal remoto) e o Storm Test (sinal remoto). O Storm Test é usado para testar se um determinado canal de acesso da proteção do relé pode lidar corretamente com um grande número de deslocamentos de sinal remoto em um curto espaço de tempo. O UTS400 simula o evento de sinal remoto no local em um curto período de tempo para testar se a proteção do relé perde o sinal de deslocamento remoto. O Resolution Test é usado para testar se a resolução SOE da proteção do relé pode atender ao padrão, de modo a garantir que a proteção do relé possa registrar com precisão os eventos de ação do equipamento de campo.

1 - Storm test

Configurando os parâmetros:

O Storm Test testa principalmente a capacidade de ação de um determinado canal de entrada do relé de proteção para lidar com um grande número de deslocamentos de sinalização remota em um curto espaço de tempo. O valor de saída só pode ser 0 ou 1, o intervalo do valor de configuração de largura de pulso (Width) é 1~99999ms, e o intervalo do número de pulsos (Count) é 1~200. Selecione a entrada binária a ser ativada em Enable DI.

<u>Cabeamento</u>

Os canais de saída deste dispositivo são todos contato seco de relé optoacoplador. Durante o teste, conecte a saída DO1 ou DO2 do UTS400 ao canal de entrada do terminal de distribuição de energia e conecte o terminal comum do UTS400 DO1- ou DO2- ao terminal comum de distribuição de energia ou a saída auxiliar DC do UTS400.

Iniciando o teste

Clique em "start" para iniciar o teste. De acordo com o tempo de largura de pulso definido e o número de pulsos, você poderá ver a mudança do valor de saída em SOE List que registrará as informações de status. O teste finalizará automaticamente após injetar o número de pulsos pré definidos.

2 - Resolution test

2023-11-13 16:25:17	Remote	30℃ (97%
O Storm Test	Resolution Test	SOE List: 6 16:25:17:853 Stop test 16:25:17:851 DO2 On-Off 16:25:17:749 DO1 On-Off 16:25:17:551 DO2 Off-On 16:25:17:549 DO1 Off-On 16:25:17:548 Start test	6
DO1 Width:	200 ms		
DO2 Width:	300 ms		
Resolution:	2 ms		
Sand and the second			
Start DI:1	o 20 DO:10	2 of Clear	SOE

Configurando os parâmetros

UTS400 tem 2 saídas, para que possa executar o teste de resolução SOE. Antes de executar o teste, primeiro defina a largura de pulso 1 (DO1 Width), a largura de pulso 2 (DO2 Width) e resolução (Resolution). O intervalo do valor de configuração de DO1 e DO2 é de 1~999999ms, e o intervalo de valores de configuração de Resolution é de 0~ 5000ms.

Cabeamento

Utilize a mesma configuração do Storm Test

Iniciando o teste

Clique em "start" para iniciar o teste. A saída DO1 ficará ativa pelo tempo definido em DO1 Width e desligará, existira um tempo de intervalo definido em Resoltion e a saída DO2 ficará ativa pelo tempo definido em DO2 Width e desligará. O teste de encerra automaticamente ao termino deste ciclo.

5.9 Relatórios (Report)

Todos os módulos, com exceção do "Remote", apresentam na parte inferior o botão "Report". Ao finalizar um teste em qualquer módulo, clique em "Report", uma nova janela abrirá.

	Tips	
(?) s	ave or expo	rt Report.
Save	Export	Cancel

Save: salva o relatório na memória interna do equipamento;
Export: exporta os relatórios salvos para o disco inserido na porta USB;
Cancel: sai do menu de relatórios.

Indica-se que ao final de cada teste o relatório seja salvo.

Após finalizar todos os testes necessários, pode-se entrar em qualquer módulo, inserir um disco USB e exportar os relatórios salvos.

O equipamento exporta os relatórios em uma pasta principal chamada "report".

Dentro desta pasta são encontradas as subpastas com o nome de cada módulo, ou seja, se o teste é feito no módulo "AC Test" o relatório do teste estará dentro da subpasta "AC".

Para abrir o arquivo em modo de edição, clique com o botão direito do mouse sobre o arquivo, clique em "abrir com", selecione Word.

5.10 System (sistema)

As configurações do sistema são principalmente sobre a visualização do tempo do sistema, tempo de falha do sinal remoto e informações de versão. Clique no botão "System" na interface principal para entrar na interface de configurações do sistema.

Norm. Volt: Defina o valor da tensão nominal

Norm. Curr: Defina o valor da corrente nominal

Norm. Freq: Defina o valor da frequência nominal

Deglitch time:

O intervalo de configuração do tempo de oscilação do sinal remoto é de 10 ~ 10000ms, geralmente o padrão é 0,015s, e também pode ser definido de acordo com a experiência de campo real.

System time:

A configuração de data e hora, clique na exibição da hora do sistema e insira os valores de data e hora. Depois de selecionar a data e a hora, clique em "Set" para concluir a configuração de data e hora. A tela ficará escura, toque em qualquer ponto da tela para que se acena novamente.

Theme: Defina o tema do sistema como Default (plano de fundo branco com detalhes em verde) ou Blue (plano de fundo branco com detalhes em azul e vermelho)

Language: Selecione entre Chines (Chinese), Inglês (English) ou Português (Portuguese) Informações do equipamento:

- Device Type: modelo
- Serial number: número de série
- Software version: versão do software
- Firmware version: versão do firmware

Menu hardware e Device Cal

Utilizados somente em fabrica e protegidos por senha.

Não podem ser alterados por pessoas não autorizadas pois qualquer modificação nestes menus interfere na precisão do equipamento.

Upgrade: Quando uma nova atualização for disponibilizada, basta inserir em seu computador um disco USB de no máximo 16Gb e formatá-lo. Após a formatação, criar uma pasta com o nome upgrade e colar o arquivo de atualização dentro desta pasta.

Nota: não altere o nome do arquivo e nem mesmo descompacte-o, caso contrário não irá funcionar. Insira o disco USB na porta USB do UTS400, clique em upgrade e o software lerá automaticamente o arquivo do pacote de atualização. Depois de confirmar que a versão foi lida corretamente, clique em OK e o software será atualizado automaticamente. Depois que a atualização for bem-sucedida, o UTS400 reiniciará automaticamente. Após reiniciar, será possível visualizar a atualização na interface principal identificada em Software Version.

Caso exista algum problema no arquivo de atualização, a seguinte mensagem será exibida. Neste caso, contacte o suporte para mais informações.

5.11 Aux. DC

Clique em Aux.DC, você pode definir a saída auxiliar DC entre 110VDC ou 220VDC, como mostrado na figura abaixo.

Nota: nos equipamentos com hardware mais novo (saída auxiliar na lateral) é possível selecionar entre: 24V, 48V, 110V, 220V ou digitar um valor que se deseja até o máximo de 350V.

5. Solução de problemas e falhas

Falha e/ou problema	Razões e soluções sugeridas		
A mensagem "Voltage channel is	Verifique a fiação do canal de saída de tensão.		
short circuit" aparece quando em			
saída de tensão.			
A mensagem "Current channel is	Verifique a fiação do canal de saída de corrente.		
open circuit" aparece quando em			
saída de corrente.			
"Current" continua piscando	Verifique a fiação do canal de saída atual.		
quando em teste de saída de			
corrente			
A mensagem "Channel	A placa de energia superaqueceu e parou de funcionar.		
overheating" aparece quando em	Desligue o equipamento, verifique a fiação, aguarde o		
saída de corrente ou tensão.	esfriamento, tente religar o equipamento e refazer o teste.		